Call for Abstract

14th International Conference on Functional Energy Materials, will be organized around the theme “Functional Energy Materials for Sustainable Future”

Energy Materials 2017 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Energy Materials 2017

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Energy materials within the past meant high energy explosive materials utilized in detonation and alternative energy storage applications. Such energy cannot be regulated for extended period. Currently energy materials embody wide selection of advanced and novel materials for the generation and storage of electric power. Energy generation, management and distribution are the quickest evolving industries of recent times. The demand to develop parts and sub-assemblies for novel product across the energy sector is increasing. H2 generation in very safe surroundings is crucial for clean energy. Advanced ceramics will offer substantial energy. Analysis in Production of electricity from piezoelectric materials, biomass, photo chemistry is studied widely in several universities.

  • Track 1-1Hydrogen generation
  • Track 1-2Photocatalysis
  • Track 1-3Complex oxide
  • Track 1-4Biomass materials
  • Track 1-5Ceramics and biomaterials
  • Track 1-6Photoelectrochemical and photochemical devices
  • Track 1-7Computation and simulation

Growing energy requirements need augmented efforts on developing materials and technologies that target energy generation, energy conversion and energy storage. For instance, recently the International solar alliance, consisting of over 120 countries, has been committed $1 trillion as investment and it's committed to reduce the prices of solar energy for remote and inaccessible communities. The World Bank is playing a significant role in mobilizing over US $1000 billion in investments which will be required by 2030. In 2013 thin-film technologies accounted for around 9 % of worldwide utilization, whereas 91 % by crystalline Si (mono-Si and multi-Si). With 5% of the general market, CdTe holds over half the thin-film market, 2 % of CIGS and amorphous Si. As per a study, prepared by the International Renewable Energy Agency (IRENA), recent solar modules are valued at $15 billion in reusable material by the year 2050. IRENA estimates that PV panel waste, comprised largely of glass, might total 78 million tonnes globally.

  • Track 2-1Solar cells
  • Track 2-2Thin films
  • Track 2-3Coatings and coating technique
  • Track 2-4Materials degradation
  • Track 2-5Photovoltaics
  • Track 2-6Recycling of solar system materials

The pollution and the negative impact caused by the utilisation of Thermal energy sources has made us realise how to produce electrical energy from other sources like Geo-thermal, Tidal, Nuclear and other sources. In order to match the efficiency of thermal power plants, continuous research is conducted in the field of materials utilised during energy generation from the unconventional energy sources.For instance, Small wind turbines (1 kW – 50 W), provide auxiliary power generator for a ship, caravan, or miniature refrigeration unit. Small wind turbines supplement 17.3 MW of generating capability throughout the USA in 2008, according to the American Wind Energy Association (AWEA).

  • Track 3-1Materials for geothermal energy
  • Track 3-2Materials for nuclear energy
  • Track 3-3Materials for hydro power
  • Track 3-4Materials for tidal and wave energy
  • Track 3-5Materials for wind energy

The formation, fabrication, textures, structures, properties, performances, and technological applications of materials and their devices for energy storage like Thermal, electrochemical, Chemical, Electrical, magnetic, and energy Storage form the theme of this venue. Materials for clean and versatile use of energy, renewable energy, energy conversion, dissipation and transport in respect to energy storage, methods and policies for developing advanced energy storage technologies are in demand. According to research firm IHS, the energy storage market is about to “explode” to annual installation size of 6GW in 2017 and over 40 GW by 2022 — from an initial base of solely 0.34 GW installed in in 2012 and 2013. For instance, the California Public Utilities Commission (CPUC) approved a target requiring the state’s 3 largest investor-owned utilities, aggregators, and alternative energy service suppliers to generate 1.3 GW of energy storage by 2020.

  • Track 4-1Fuel cells
  • Track 4-2Battery technologies
  • Track 4-3Rechargeable technologies
  • Track 4-4Thermal storage materials
  • Track 4-5Phase Change Materials
  • Track 4-6Supercapacitors
  • Track 4-7Smart grid and PV system
  • Track 4-8Emerging materials and devices

Using appropriate electronics, piezo electrical effect is used for making a self-sustaining energy supply system. This is of explicit interest whenever power supply via cable isn't feasible and therefore the use of batteries associated maintenance expenditure don't seem to be desired. The application of piezoelectricity harvesting is anticipated to extend considerably in oil and gas production because it may be a cost-efficient variant to wired infrastructure. Asia Pacific and North American countries are expected to indicate higher growth in the thermo electricity energy harvesting market over the forecast period.

  • Track 5-1Bio-based energy harvesting
  • Track 5-2Piezoelectric materials
  • Track 5-3Thermoelectric materials
  • Track 5-4Pyroelectric materials
  • Track 5-5Emerging energy harvesting technologies

Superconductors carry current virtually without loss, so that they permit large savings in generating and transporting electricity. High-temperature superconductors conduct current with almost null resistance at temperatures near 77 K. The applications of semiconductors in energy saving systems embrace superior sensible grid, electrical power transmission, transformers, power storage devices, fault current limiters, etc.. In wind turbines the lower weight and volume of superconducting generators could lead on to savings in construction of tower prices, offsetting the higher prices for the generator and lowering the total unit cost of electricity.

  • Track 6-1High temperature superconductors
  • Track 6-2Superconducting phase transition
  • Track 6-3Organic superconductors
  • Track 6-4Chemical elements
  • Track 6-5Properties of superconductors
  • Track 6-6Superfluid film
  • Track 6-7Superconducting Magnetics Energy Storage (SMES)
  • Track 6-8Application of superconductors and the future

The comparatively recent shift toward exploitation nano technology with regard to the capture, transfer, and storage of energy has positive economic impacts on society. The management of materials that nano technology offers to scientists and engineers is one amongst the vital aspects of nano technology. Nano technology in energy materials is exhibiting raised potency of lighting and heating, increased electrical storage capability, and a decrease in the quantity of pollution from the utilization of energy. Advantages like these build the investment of capital in R&D of nano technology a prime priority. Nano structuring has been utilized to improve the efficiencies of established photovoltaic technologies, for instance by rising current collection in amorphous Si devices, plasmonic improvising in dye-sensitized solar cells, and improved lightweight trapping in crystalline Si.

  • Track 7-1Nanoionics
  • Track 7-2Nanofabrication
  • Track 7-3Inorganic nanocrystals
  • Track 7-4Quantum dot devices

The distinction in a green building is in approach to its style, that focuses on a priority for extending the life of natural resources; reducing operational prices of energy and water; providing human comfort, safety and productivity. Alternative typical options would come with the utilization of non-toxic, recycled and environmental friendly building materials. Replacement of natural sand with fine-grained crystalline silicon oxide made up of rejected sedimentary rock and clay bricks with eco-friendly, technically superior, ash bricks etc. smart meters in the residential application are integrated with communication protocols to transfer the energy flow data to the house owner. These meters facilitate customers scale back their energy bills and facilitate conservation of energy. Thus, the market of smart houses is predicted to witness important growth throughout the forecast period.

  • Track 8-1Insulation materials
  • Track 8-2Smart windows
  • Track 8-3Energy-efficient lighting systems
  • Track 8-4Foam technologies
  • Track 8-5Polymer composites
  • Track 8-6Properties of materials
  • Track 8-7Innovative materials

Energy materials in medical specialty applications: functional nano materials like carbon nanotubes (CNTs), graphene, fullerenes, soft, polymeric nanoparticles, metal organic nano materials, self-assembled and supramolecular nanostructures, and their derivatives have distinctive physico-chemical properties like catalytic, dielectric, optical and mechanical. Applications are sensors, drug delivery, proteomics and biomolecular electronics. Especially, their biological applications have furthered elementary understanding of biomolecular systems like vesicles, viruses and cells, stimulated design of nano materials with biological functions. The last ones are ordinarily referred to as bioinspired nanomaterials.
Replacing vehicle chassis with lighter weight materials, Fuel cells are researched in the field of vehicular transport. Solar cells are largely utilized in agricultural fields.

  • Track 9-1Biomedical application
  • Track 9-2Transportation indutry application
  • Track 9-3Domestic applications
  • Track 9-4Applications in agriculture